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Abstract: Cloud cover is generally present in remotely sensed images, which limits the potential of the images for 
ground information extraction. Therefore, removing the clouds and recovering the ground information for the cloud- 

contaminated images is often necessary in many applications. In this project, propose a cloud removal approach based 

on image inpainting. The approach removes cloud-contaminated portions of a satellite image and then reconstructs the 

information of missing data utilizing temporal correlation of multi temporal images. In order to remove the noise in the 

classified image weighted trimmed median filter is used. It is possible to remove the isolated shadow pixels in the non- 

shadow area and isolated non-shadow pixels in the shadow area of the classified image. The median filter works by 

moving through the image pixel by pixel, replacing each value with the median value of neighbouring pixels. 

Comparisons with existing algorithms our approach achieves better results in terms of misclassification probability and, 

in particular, to be very effective in cloud removal. 
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I. INTRODUCTION 

 

The past two to three decades has seen a turnaround in our 

capacity to survey and map our global environment 

through use of satellite remote sensing technology. 

Remote sensing is closely related with satellite imaging. 

Images can  be acquired by using different satellites  such 

as ikonos, landsat, Quickbird and each satellite is used for 

different purposes like defense (change detection in 

regions), agriculture (for analysis of agriculture) etc. Every 
object in a satellite image is essential for accurate 

processing, so image quality is one of the most important 

factors in satellite images. But presence of clouds in 

satellite images will affect the Quality of image. It is 

difficult to avoid clouds in satellite images during image 

acquisition and it also causes many problems in the study 

of satellite image based applications. Removing cloud as a 

noise from an image will be helpful for better analysis of 

satellite imaging applications. Remote sensing has been 

commonly used in a wide variety of urban and 

environmental applications, such as monitoring land-use 

change, measuring water quality, and mapping vegetation 
[1]. Detection of clouds in satellite images is a very 

interesting remote sensing application such as 

Meteorological forecasting, Urban area control, Oil spills 

monitoring,   Traffic   analysis,   Environmental   analysis. 
 

Most remotely sensed images encompass the presence of 

clouds that, especially in the visible and infrared range, 

strongly affect the received electromagnetic radiation. 

Depending on the application, clouds act as an unwanted 
corruption or, rather, as an information source. Therefore, 

the detection of pixels affected by the various types of  

 

 

cloud formations plays a fundamental role in the 

processing of remotely sensed scenes and has attracted a 

large number of scientific contributions. In particular, the 

cloud masking problem, namely, the binary classification 

task aimed at distinguishing between cloudy and non 

cloudy pixels, constitutes a key step in many applications 

and is the object of the current study. 
 

Traditionally both spatial and spectral techniques have 

been employed to identify cloud contaminated pixels in 

polar orbiting and geostationary satellite data. The key to 

the success of most of these algorithms lies in the selection 

of the thresholds for various spectral tests. In more robust 
algorithms, spatially and temporally varying thresholds, 

which better capture local atmospheric and surface effects, 

are used to improve their performance and broaden their 

application over algorithms with fixed thresholds for cloud 

tests. Extracting cloud field information from these images 

using visual/manual interpretation is a tedious and 

unreliable task and moreover the results are, to some 

extent, operator dependent. Therefore, highly efficient and 

robust cloud classification schemes are needed for 

automatic processing of satellite cloud imagery for 

climatological applications. 
 

In recent years, considerable research has been focused on 

the cloud classification area. A good review of the 

available schemes is provided by Pankiewicz [2]. 

Generally, two broad categories of cloud features are most 
commonly used in the cloud classification field: spectral 

and textural features. The first class of features, which 
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plays a more important role for cloud classification, 

extracts the information on the cloud radiance in different 

spectral bands. Some of the most commonly used methods 

in this category include threshold based schemes, 

histogram schemes, and multispectral approaches. The 

spectral features due to their physical importance (albedo, 

temperature) are proven to be effective and simple. 

However, they also encounter some problems because of 

the spectral similarities of certain features such as ice 
cloud and snow. Other factors, such as moisture in 

atmosphere, may also alter the multispectral characteristics 

and thus affecting the final judgement. The second 

category, i.e., textural features, distinguish certain types of 

clouds by the spatial distribution characteristics of gray 

levels corresponding to a region in one specific channel. 

While the spectral characteristics of clouds may change, 

their textural properties are often distinct and tend to be 

less sensitive to the effects of atmospheric attenuation or 

detector noise [3]. Most of the texture-based cloud 

classification methods in the past used statistical measures 
based on gray level cooccurrence matrix (GLCM) [4] and 

its variant, such as gray level difference vector (GLDV), 

gray level difference matrix (GLDM) and sum and 

difference histogram (SADH). 
 

In this paper propose a cloud removal method using image 

inpainting after detecting cloud by using spatio-temporal 

(Markov Random Field) MRF method.  A recurrent 

concern in cloud detection approaches is the high 

misclassification rate for pixels close to cloud edges. Solve 

this problem by introducing a novel penalty term within 

the classical maximum a posteriori probability–Markov 

random field (MAP-MRF) approach. To improve the 

classification rate, such term, for which we suggest two 

different functional forms, accounts for the predictable 
motion of cloud volumes across images. Two mass 

tracking techniques are proposed. The first one is an 

effective and efficient implementation of the probability 

hypothesis density (PHD) filter, which is based on 

Gaussian mixtures (GMs) and relies on finite set statistics 

(FISST). The second one is a region matching procedure 

based on a maximum cross-correlation (MCC) that is 

characterized by low computational load. Through 

extensive tests on simulated images and real data, acquired 

by   the   SEVIRI   sensor,   both   methods   show   a clear 

performance gain in comparison with classical spatial 
MRF-based algorithms. But this spatio-temporal MRF 

method does not consider cloud removal and it is not 

suitable for high level noise. So for solving this problem 

here introduce two techniques. The first one is a weighted 

trimmed median filter for handling high level noise and an 

adaptive inpainting algorithm for cloud removal. After 

detecting the cloud removes the cloud region using image 

inpainting. This approach removes cloud-contaminated 

portions of a satellite image and then reconstructs the 

information of missing data utilizing temporal correlation 

of multi temporal images. In order to remove the noise in 
the classified image weighted trimmed median filter is 

u s e d . It is possible to remove the isolated shadow pixels 

in the non-shadow area and isolated non-shadow pixels in 

the shadow area of the classified image. The median filter 

works by moving through the image pixel by pixel, 

replacing each value with the median value of 

neighbouring pixels. Comparisons with existing 

algorithms our approach achieves better results in terms of 

misclassification probability and, in particular, to be very 

effective in cloud removal. 

 

II. TRADITIONAL CLOUD DETECTION 

METHODS 

 

Basic pixel-wise algorithms, namely, considering each 

pixel individually without reference to the context, have 

been largely exploited in the past by means of both 

supervised [5] and unsupervised [6] approaches. More in 

detail, simple and popular techniques, which require a 

preliminary careful study of the spectral properties of 

clouds, rely on multiple threshold tests, which are also 

able to separate snow and cloud sand different classes of 
clouds. Other widely used supervised algorithms are based 

on support vector machines (SVMs), which have been 

successfully applied to hyperspectral image classification 

in general and to cloud detection in particular. 
 

On the other hand, recent studies based on semi supervised 

neural network [7] approaches use such spatial consistency 
for augmenting the training set by means of unlabeled 

samples. However, the most successful framework 

exploiting the statistical dependence of adjacent pixels 

consists in modeling the label distribution as a Markov 

random field (MRF). This method, which was proposed, 

has soon pervaded the image processing literature. The 

reason of such success is that MRF-based approaches [8] 

combine the conflicting requirements of accuracy and 

computational ease, the latter by limiting the number of 

pixels relevant to the prediction of the targeted one. Thus, 

they have been widely used to model (for segmentation 

and classification purposes) not only optical images (both 
hyperspectral and high-resolution ones) but also SAR data 

(both polarimetric and intensity images). Other emerging 

applications of MRF are related to hyperspectral image 

unmixing and to image enhancement, such as the 

regularization techniques in microwave tomography, the 

despeckling of SAR images, and the restoration algorithms 

for an optical image. Classical MRF methods account only 

for spatial dependence relations, thus neglecting the 

temporal information often avail-able in image sequences.  
 

In fact, some authors have proposed to consider also the 

temporal correlation among pixels belonging to 

subsequent images. However, the identification of the 

effective definition of spatiotemporal adjacency turns out 

to be nontrivial. Until now, this problem has been faced by 

general statistical approaches and physical methods. 

Despite the intrinsic difficulty in the modeling phase, the 

introduction of temporal correlation has permitted to 
achieve noticeable results in many applications, such as 

video coding and object detection and tracking. 
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Spatio-temporal MRF method turns out to be especially 

valuable in mitigating the problem of misclassification rate 

at the cloud edges, which typically stems from low 

contrast against sea and land background [9], [10], by 

exploiting the cloud motion as an additional discriminant 

feature against the static background. We account for 

temporal dependence relations, such as those present in 

image sequences acquired by sensors with a high 

acquisition rate (w.r.t. the dynamics of the underlying 
physical phenomena), by contaminating the classical 

structure of the MRF framework through a penalty 

function that quantifies the belief that a pixel belongs to 

the cloud class, as it can be inferred from the history of 

cloud locations across the previous images. Thus, the 

classification performed on the current image also takes 

into account the cloud motion dynamics by means of 

multitarget tracking (MTT) techniques.  
 

To improve the classification rate, such term, for which we 

suggest two different functional forms, accounts for the 

predictable motion of cloud volumes across images. Two 

mass tracking techniques are proposed. The first one is an 

effective and efficient implementation of the probability 

hypothesis density (PHD) filter, which is based on 

Gaussian mixtures (GMs) and relies on finite set statistics 

(FISST). The second one is a region matching procedure 

based on a maximum cross-correlation (MCC) that is 
characterized by low computational load. Through 

extensive tests on simulated images and real data, acquired 

by the SEVIRI sensor, both methods show a clear 

performance gain in comparison with classical spatial 

MRF-based algorithms. This method performs efficient 

cloud detection than other methods and achieve low 

misclassification rate and low computational load. 

 

III.  PROBLEM STATEMENT 

 

Cloud cover is generally present in remotely sensed 

images, which limits the potential of the images for 
ground information extraction. Therefore, detecting and 

removing cloud-contaminated images is often necessary in 

many applications. Here detecting cloud using 

spatiotemporal Markov Random Field (MRF) approach 

and cloud removal approach based on image inpainting.  
 

To improve the classification rate, such term, for which we 
suggest two different functional forms, ac-counts for the 

predictable motion of cloud volumes across images. Two 

mass tracking techniques are proposed. The first one is an 

effective and efficient implementation of the probability 

hypothesis density (PHD) filter, which is based on 

Gaussian mixtures (GMs) and relies on finite set statistics 

(FISST). The second one is a region matching procedure 

based on a maximum cross-correlation (MCC) that is 

characterized by low computational load. Through 

extensive tests on simulated images and real data, acquired 

by the SEVIRI sensor, both methods show a clear 
performance gain in comparison with classical spatial 

MRF-based algorithms. Then removes cloud-contaminated 

portions of a satellite image and then reconstructs the 

information of missing data utilizing temporal correlation 

of multi temporal images. In order to remove the noise in 

the classified image weighted trimmed median filter is 

used. It is possible to remove the isolated shadow pixels in 

the non-shadow area and isolated non-shadow pixels in the 

shadow area of the classified image. The median filter 

works by moving through the image pixel by pixel, 

replacing each value with the median value of 
neighbouring pixels. Comparisons with existing 

algorithms our approach achieves better results in terms of 

misclassification probability and, in particular, to be very 

effective in cloud removal. 

     

 
Fig 1: Cloud region in the satellite image is detected using 

spatio-temporal MRF method (green colour shows cloud 

region). 
 

 
Fig 2:  After detecting cloud region removing and 

recovering Cloud region by using image inpainting 
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Fig 3:    Block diagram of cloud detection and removal 

Method 

 

A. Input image 

The input cloud image is stored and read from the data 

base. 

 

B. Feature Extraction 

Cloud features, such as position, extension, and velocity 

are extracted. We adopt the bounding box (BB) approach, 

in which the cloud volumes are represented as the 

rectangles that circumscribe them. Accordingly, it is 

possible to define, for each time instant k, a set B( k )= 
{B( k )1,B( k )2,...,B( k )Q ( k )} of Q ( k ) BBs, described 

by their center coordinates {( c( k )l, 1,c( k )l, 2) }l =1,...,Q 

( k )and their sizes {( w( k )l,h( k ) l)}l =1,...,Q ( k ). 

 

C.  MTT algorithm 

We present here an MTT approach based on the finite set 

statistics (FISST), which allows to jointly track a changing 

number of targets. In fact, the multi target state X( k ) =

 at time k is composed by a 

variable number of M ( k ) elements, consisting of centers, 

sizes, and velocities of each BB, i.e., each component of 
X( k ) is a vector 

 with l 
=1,...,M ( k ) . This situation is handled by modeling the 

state as an RFS, which is the union of the relevant features 

of the survived targets S( k ), those of the spawned targets 

T( k ) ,and those of the newborn targets Γ( k ), namely 

       

       Xk = s(K) X(k−1) ∪T(k) Xt(k−1) ∪ ⌈(k) 

 

In addition, the multi target observation set   zk =

{z1
k , … . . , zN(k)

k  }   is an RFS, whose components zl, l 

=1,...,N( k )are the centers and the sizes of the BBs 

detected at time k , comprising detected observations 
generated by the targets, for example, Ek(( k ), and those 

arising from the clutter, for example, C( k ), namely 

 

z(k) = E(k) X(k) ∪ C(k)  

 

D. MAP-MRF 

The maximum a posteriori probability (MAP) rule namely 

 

Ik = arg maxIk  
 p  Ik  

|d(0:k)   

= arg maxIk  
 p  dk  

|Ik , d(0:k−1) p Ik  
|d(0:k−1)   

                                    

= arg maxIk  
 p  dk  

|Ik p Ik  
|d(0:k−1)   

 

In which the last equality follows from the widely 

accepted hypothesis that the current image d( K ) is  

conditionally inde-pendent of the previous ones, given the 

current classification l( K ). Two terms can be evidenced: 

p dk I(k) is the likelihood that takes into account the data 

acquired at time K;  p Ik d(0:k−1) is the a priori probability 

that models the information that can be derived from the 

past.  

 

E. Cloud removal 
The steps are, 
 

1. Read the present and previous image. 

2. Image is divided into multiple blocks. 
3. Replace the block and get approximate image. 

4. For fine tuning apply inpainting. 

 

IV. ALGORITHM IMPLEMENTATION 

 

a) Weighted trimmed median filter 

The pixels I1 ,I2,…..Im−1 , Im , Im+1 , … . . IN  in the moving 

window associated with the center pixel Ic, have been 

sorted in an ascending (or descending) order, with  Im 

being the median value.  The key generalization to the 

median filter which is introduced in the alpha-trimmed 

mean (α-TM) filter, is to employ a median basket in which 

one collects the same predetermined number of pixels 
above and below the median pixel. The values of these 

selected pixels are then averaged to give the filtering 

output, A c, as an adjusted replacement to Ic, according to 
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Where L =⎣αN⎦,with 0 ≤ α≤ 0.5. It is evident that a single-

entry median basket (L =0) α-TM filter is equivalent to the 

median filter and a N-entry (L =0.5N) median basket is 

equivalent to the simple moving average filter. The 

general trimmed mean (GTM) filter uses a median basket 

in the same way as one does in the α-TM filter to collect 

the pixels. The pixel values in the median basket and the 

center pixel Ic in the moving window are then weighted 
and averaged to give the GTM filtering output: 

        
 

where  Gc  is the GTM filtering output, and  wc  and  wj’s 

are  the averaging weights for the center  pixel and the 
pixels in  the median basket, respectively. When  wc =0 

and all  wj’s  are equal to each other (nonzero), the GTM 

filter becomes  the  α-TM filter. In the GTM filter, all the 

weights are predetermined and are fixed during filtering 

procedure.  However, it is possible to further improve the 

GTM filter by varying the weights according to the 

absolute difference between the pixel values in the median 

basket and the median value. For the removal of impulse 

noise, we set wc=0, and the varying weight trimmed 

median (VWTM) filter is given by 

 

              
 

where xjm has a value in the range of [0,1], defined by 
 

                
 

with B  being the maximum pixel  value of a given type of  

image (e.g.,  B =255 for a 8-bit, gray-scale image).The  

weight w( x) is a decreasing function in the range  [0,1] 

and is chosen to be 
 

         
 

Notice that w(0)=1 and  w(1)=0, so the median value  

always has the largest weight ( w( xmm )=1). The larger 

the absolute difference between the pixel values in the 

median  basket and the median value, the smaller the 

weight will  be. As is well known, the median value has 

the least probability to be impulse noise corrupted because 

the impulses typically occur near the ends of the sorted 
pixels. However, although not corrupted, the median value 

may not be the optimal value to replace the center pixel 

value because it may differ significantly from the noise-

free value. The weight of the median value is the largest 

and the weights of other pixels in the median basket vary 

according to their difference from the median value. If an 

impulse noise corrupted pixel happens to be selected for 

inclusion in the median basket, its contribution to the 

average will be small because xjm is large. In general, the 

weight function can assist in eliminating impulse noise 

while providing a well-adjusted replacement value for the 

center pixel  Ic.    

 
b) Adaptive inpainting algorithm 

The basic procedure of the presented inpainting algorithm 

consists of a one-time initialization step executed at the 

beginning as well as an iterative part. 

 
c) Initialization 

To each image pixel an individual value is assigned, 

henceforth referred to as confidence. The initialization 

step of the presented algorithm implies setting the 

confidence to an initial value. Pixels belonging to the 

known image areas receive a confidence C= 1while the 

masked pixels of the unknown region receive a confidence 

C= 0. Thus the initial confidence distribution is the inverse 

of the disocclusion mask. 

 
d) Inpainting loop 

After the initialization, the actual inpainting-process is 

repeated iteratively until the algorithm terminates. Each 

iteration starts with the determination of so-called front 

pixels, which are those unknown pixels located on the 

edge to the known image region. After their identification, 

these front pixels are sorted by a pixel-specific priority 

value to obtain a sensible inpainting order. Afterwards, a 

window of fixed size centered around the front pixel of 

highest priority is filled by means of a block-matching-

approach. Finally, the confidence values of all affected 
pixels are updated.  

 
e) Front pixel priority 

The information required to fill in a gap can only be 

gathered from the surrounding image regions known to the 

algorithm. Hence, inpainting always propagates 

successively from the border between known and un-

known regions inwards. As a result, merely the front 

pixels located at this border are of interest within an 
inpainting step. These front pixels can be captured by 

subtracting the occlusion mask from a dilated occlusion 

mask and multiplying the image by the resulting 

difference. After detection of the current pixel front, a 

prior-ity value for each front pixel is determined as a 

product of several characteristics that depend on the front 

pixel neighborhood. The purpose of the front pixel priority 

is to indicate, which front pixel should be favored in the 

succession of inpainting in order to conserve important 

image structures, such as edges leading into the unknown 

area. The priority value Pj, which could be supplemented 
with arbitrary factors further contributing to the inpainting 

order such as the edge angle of incidence, is computed as 
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Pj =  Ej . Cj 

 
Where Ej is the edge energy and Cj is the confidence in 

Pixel j. The normalized edge energy Ej sums up the 

gradient energy of the surrounding area of the front pixel. 

The more edges are close to the front pixel, the bigger Ej 

will be. The factor Ej thus ensures that edges are continued 

into the unknown region prior to smooth regions with less 

contribution to the image structure. 

 

The confidence Cj describes the ratio of known pix-els to 

unknown pixels within the fixed-sized pixel block around 

a considered front pixel. The factor Cj hereby makes front 

pixels surrounded by many known texture pixels more 
likely to be selected for inpainting. 

 

f) Block matching 

After the front pixel of highest priority is determined, a 

pixel block centered around it as well as a surrounding 

search area are defined. Both the block size and the size of 

the search area are fixed and forwarded to the algorithm in 

advance of the inpainting process. Within the search area 

all completely known blocks of the same size as the partly 

unknown block are compared to that sought one for the 

purpose of finding the best matching block. The criterion 
for finding that most fitted pixel block is the luminance 

value difference between the known pixels of the partly 

unknown block around the front pixel and those of same 

relative position within the reference block. The reference 

block yielding the minimum mean squared error is then 

chosen and referred to as the best match. Afterwards, each 

unknown pixel within the sought block, including the 

central front pixel, receives the color value of the 

corresponding pixel within the best match. 

 

In the presented algorithm, the best match approach is 

improved by a weighted match method superimposing 
multiple weighted reference blocks Bi. This is similar to 

an approach used for denoising images, presented as the 

Non-local Means Algorithm, which is also built upon the 

idea of superimposing weighted references. The individual 

weighting factors Wi of the weighted matches method are 

com-posed as products of three factors which are 

weighting functions themselves.  

      

 

To these belong an average luminance difference 

(W∆lumi), the spacial distance between the reference 

block and the sought one (Wdisti) as well as the average 

confidence (Wconfi). The individual block weights are ad-

ditionally weighted by a normal distribution function to 

form the overall reference block. The variance is chosen to 

be relatively small and the conventional best match 

method is used as a fall back mode when no block matches 

with weights above a certain threshold can be found. 
 

g) Update of Confidence Values 

In the end of each iteration, the confidence C of the 

currently considered front pixel is assigned to all recently 

filled in texture pixels within the sought pixel block. 

 

Table -1: Advantages and Disadvantages of existing cloud 

detection techniques. 

 

No  Algorithm  Advantages  Disadvantages 

1 Semi 

supervised  

Simple  Need large 

training set. 

2 MODIS 

imagery 

effective Time 

consuming. 

3 Neural 

network 

Less 

complexity 

Not consistent. 

4 MRF 

approach 

Simple, 

popular. 

Low accuracy, 

Need 

preprocessing. 

5 Spatio-

temporal 

MRF 
approach. 

Improved 

classification 

rate. 

Not suitable for 

high level nose, 

Does not 
consider cloud 

removal. 

 

 
Fig 3: performance analysis of existing and proposed 

system. 

 

V. CONCLUSION 

 

Removing and recovering cloud region from satellite 

images after cloud detection using maximum a posteriori 

probability–Markov random field (MAP-MRF) method 
has been proposed. Cloud cover is generally present in 
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remotely sensed images, which limits the potential of the 

images for ground information extraction. Therefore, 

removing the clouds and recovering the ground 

information for the cloud contaminated images is often 

necessary in many applications. In this project, we propose 

a cloud removal approach based on image inpainting. The 

approach removes cloud-contaminated portions of a 

satellite image and then reconstructs the information of 

missing data utilizing temporal correlation of multi 
temporal images. In order to remove the noise in the 

classified image weighted trimmed median filter is used. 

Adoption of this approach in different applications, such 

as meteorological forecasting, urban area control, and oil 

spills monitoring, in which significant improvements are 

expected by capitalizing on multiobject detection and 

tracking. Comparisons with existing algorithms our 

approach achieves better results in terms of 

misclassification probability and, in particular, to be very 

effective in cloud removal. 
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